The Geometry and Electronic Structure of the Cu²⁺ Polyhedra in Trirutile-Type Compounds Zn(Mg)_{1-x}Cu_xSb₂O₆ and the Dimorphism of CuSb₂O₆: A Solid State and EPR Study

E.-O. Giere,* A. Brahimi,† H. J. Deiseroth,† and D. Reinen*

*Fachbereich Chemie and Zentrum für Materialforschung, Philipps-Universität Marburg, Marburg, Germany; and †Anorganische Chemie, Universität–GH Siegen, Siegen, Germany

Received October 28, 1996; accepted March 4, 1997

DEDICATED TO PROFESSOR R. BLACHNIK ON THE OCCASION OF HIS 60TH BIRTHDAY

Results from crystal structural analyses of CuSb₂O₆ with the trirutile structure, which transforms from the β phase (space group $P2_1/n$ to the α -phase (space group $P4_2/nmn$) at 380 K, are reported. While extensive twinning prevents the single crystal structure determination of the β modification, the α phase reveals compressed CuO₆ polyhedra with Cu-O spacings of 202.6 pm $(2\times)$ and 206.6 pm $(4\times)$. From the spectroscopic investigation (EPR, optical) of mixed crystals $Zn(Mg)_{1-x}Cu_xSb_2O_6$ with dependence on x and temperature it is deduced that the CuO_6 polyhedra are compressed (spacings \cong 197 pm (2×) and \simeq 208.5 pm (4×)) for x < 0.5 but transform to elongated entities at larger Cu²⁺ concentrations (spacings 200.4 pm (2×), 201.2 pm $(2\times)$, and 212.0 pm $(2\times)$ from neutron diffraction powder analysis (3)). Evidence for anisotropic π -contributions to the Cu–O bond is presented. A detailed analysis of the ground state potential surface in terms of a vibronic Jahn–Teller coupling model in the presence of a host site strain is given for the two alternative CuO₆ geometries. The Cu–O spacings in α -CuSb₂O₆ are explained as resulting from those in the β phase by a dynamic averaging process (201.2 pm (2×), 212.0 pm (2×) \rightarrow 206.6 pm (4×) above 380 K). © 1997 Academic Press

INTRODUCTION

Trirutile-type solids with the chemical composition AB_2X_6 crystallize in the space group $P4_2/mnm$ and two formula units in the unit cell (1, 2) (Fig. 1). Their structure derives from the rutile lattice by tripling the *c*-axis. As can be deduced from published atomic positions (1) the ZnO₆ octahedra in ZnSb₂O₆ are tetragonally compressed along the Zn–O1 bonds in first approximation, with the bond angles in the equatorial plane deviating by $\cong \pm 6^{\circ}$ from the other hand, crystallizes in a monoclinic variant of the trirutile structure (1) and a powder neutron diffraction investigation has been performed (3). The symmetry reduction is

due to the Cu²⁺ ion and its tendency to adopt a tetragonally elongated octahedral geometry (4). Indeed in the space group $P2_1/n$ the equivalence of the four equatorial O2 oxygen atoms is lifted (3) so that two of the copper-oxygen bonds become longer while the other two are reduced in length approaching the values of the Cu-O1 spacings (see Table 3). In both structures the MO_6 polyhedra (M =Zn²⁺, Cu²⁺) possess a center of symmetry.

CuSb₂O₆ is reported to exhibit a monoclinic-to-tetragonal phase transition around 500 K (5), in severe contrast to our findings (see below). Zn(Mg)Sb₂O₆ and CuSb₂O₆ show complete miscibility, with the mixed crystals Zn_{1-x} Cu_xSb₂O₆ undergoing a continuous phase transition at 293 K from tetragonal to monoclinic at a critical concentration of $x_c \approx 0.75$ (2). A higher order phase transition is indeed in agreement with group theoretical symmetry relations.

In this study the results of single crystal structure determinations of CuSb_2O_6 in the high-temperature α modification and in the low-temperature β modification will be presented. Spectroscopic investigations (EPR, IR, and ligand-field) of the mixed crystal series $\text{Zn}(\text{Mg})_{1-x}$ $\text{Cu}_x\text{Sb}_2\text{O}_6$ have been performed to elucidate the geometry and the electronic structure of the CuO₆ polyhedra with dependence on *x*. In particular the interest is focused on the analysis of the transition from the compressed to the elongated octahedral MO_6 coordination, when Zn^{2+} (Mg²⁺) is successively replaced by Cu²⁺.

EXPERIMENTAL

Preparation

Although $CuSb_2O_6$ was obtained as the main product with different starting materials (6), the reaction of elemental Cu with Sb_2O_3 under a stream of dry oxygen turned out to be the most effective preparation route. This procedure

FIG. 1. The tetragonal tritutile unit cell of $ZnSb_2O_6$ and α -CuSb_2O₆ (right) compared to the monoclinic cell of β -CuSb₂O₆ (left, polyhedron distortion overemphasized); SbO₆ octahedra, shaded; CuO₆/ZnO₆ octahedra, ball and stick.

yields pure CuSb_2O_6 by grinding the starting materials Cu and Sb_2O_3 , annealing them to 1280 K in a finger-shaped corundum crucible, and exposing them to a continous stream of pure oxygen in a tube of quartz glass. It is important to anneal the starting mixture as fast as possible to avoid vaporization of Sb_2O_3 . The microcrystalline reaction product has a light yellow color. Its X-ray diagram, which can be indexed on the basis of the lattice constants published for CuSb_2O_6 in (3), does not show any impurities of other phases. It should be mentioned that despite different colors of the CuSb_2O_6 samples (black-green to yellow), no significant differences in the X-ray powder diagrams can be detected. Traces of Cu(III) should be responsible for the dark colors due to mixed valence behavior.

Multiply twinned (T = 293 K) crystals of β -CuSb₂O₆ were obtained from a V₂O₅ flux. The reaction mixture (mass ratio CuSb₂O₆: V₂O₅ \approx 1:4) was heated to 1170 K in an evacuated quartz ampoule ($l \approx 13$ cm, $\emptyset \approx 12$ mm), kept at this temperature for 24 h, cooled to 970 K, and annealed at this temperature for another 24 h. This procedure yields black, well-shaped β -CuSb₂O₆ crystals ($\emptyset \approx 0.1$ –0.2 mm), which could be separated microscopically from adhering V₂O₅ and which were suitable for single crystal film investigations. Due to the multiple twinning (see below) originating from the phase transformation with associated symmetry reduction upon cooling, the crystals were unsuitable for diffractometer measurements. When heating those to temperatures above 380 K—a transition temperature distinctly lower than that estimated before (5)—a reversible phase transition to α -CuSb₂O₆ takes place without destroying the crystals, now making X-ray single crystal measurements possible (Table 1). Mixed crystals Zn(Mg)_{1 - x}Cu_xSb₂O₆ were synthesized following the preparation procedure in (2).

TABLE 1 Relevant X-Ray Data for the Single Crystal Measurement of α-CuSb₂O₆

Chemical formula	α-CuSb ₂ O ₆
Crystal system, space group	Tetragonal, $P4_2/mnm$ (No. 136), $Z = 2$
Lattice constants [pm]	a = b = 462.91(13); c = 928.82(6)
X-ray density [Mg/m ³]	6.72
Linear absorption coeff. $\mu_{MoK\alpha}$ [cm ⁻¹]	188.3
Diffractometer	SYNTEX P2 ₁ , MoK α , ω -scan
Temperature [K]	400
θ range [°]	$2 < 2\theta < 70$
Total number of reflections measured	1620
Number of symmetry independent	265
Symmetry independent with $I > 2.5\sigma(I_0)$	201
Structure refinement	NRCVAX (6)
<i>R</i> values: $R(I > 2.5\sigma(I))$; <i>R</i> (all data)	0.015; 0.021
$wR2 (I > 2\sigma(I)); wR2 (all data)$	0.016; 0.019

X-ray Investigations of CuSb₂O₆ Single Crystals

The multiple twinning of the β -CuSb₂O₆ crystals below 380 K, which was carefully analyzed by the precession technique (MoK α), showed up in a specific reflection pattern characterized by a very narrow, fourfold splitting of the BRAGG reflections, which could not be resolved by a corresponding diffractometer measurement. The splitting pattern confirmed the assumed monoclinic symmetry for β -CuSb₂O₆, derived from Rietveld refinement of earlier neutron powder data (3) and predicted by a group-subgroup relation described elsewhere (7). Another series of precession photographs of the same crystal, taken well above the transformation temperature of $CuSb_2O_6$ (T = 380 K), did not show any reflection splittings and confirmed the ideal tetragonal trirutile structure for α -CuSb₂O₆ at temperatures above the transition point. In Table 2 the refined positional and thermal parameters are compared to literature data for β -CuSb₂O₆ (3). Table 3 gives important interatomic distances and angles.

RESULTS AND DISCUSSION

The Structure of $CuSb_2O_6$

CuSb₂O₆ adopts the ideal tetragonal trirutile structure only in the high-temperature modification (T > 380 K). Below 380 K a second-order phase transition from tetragonal α -CuSb₂O₆ to monoclinic β -CuSb₂O₆ takes place, which inevitably causes a multiple twinning of the respective single crystals. As can be derived from the above mentioned group–subgroup relation (7) and a series of precession photographs of β -CuSb₂O₆ crystals, two subsequent symmetry reduction steps, each of index 2, lead to a crystal splitting into four domains. The phase transformation induces a significant splitting of BRAGG reflections on high-resolution powder diagrams. Careful analyses of powder diagrams show the splitting to be basically due to an angular devi-

TABLE 2

Comparison of the Positional and Isotropic Thermal Displacement Parameters (Standard Deviations in Parentheses) for α -CuSb₂O₆ (First Row, T = 400 K, Space Group $P4_2/mnm$, This Work) and β -CuSb₂O₆ (Second (and Third) Row, Taken from (3), Space Group $P2_1/n$)

Atom	Position	x	У	Ζ	<i>B</i> [Å]
Cu	2a	0	0	0	0.64(9)
	2a	0	0	0	
Sb	4e	0	0	0.33249(3)	0.47(2)
	4e	0.0011(9)	0.008(1)	0.3338(6)	
O1	4f	0.3095(8)	0.3095(8)	0	0.61(9)
	4e	0.3130(9)	0.2983(8)	0.00174(4)	
02	8 <i>j</i>	0.3014(5)	0.3014(5)	0.3271(3)	0.74(6)
	4e	0.2991(8)	0.3176(7)	0.3291(4)	
	4e	-0.3012(8)	-0.2915(9)	0.3248(4)	

TABLE 3

Comparison of Important Interatomic Distances (pm) and Angles (°) for ZnSb₂O₆ (Taken from (1), No Standard Deviations Given), β -CuSb₂O₆ (Taken from (3)), and α -CuSb₂O₆ (This Work), with Standard Deviations in Parentheses

$ZnSb_2O_6$ β -CuSb_2O_6		α -CuSb ₂ O ₆	
	Distances		
Zn–O1: 202 2×	Cu–O1: 200.4(4) 2×	Cu–O1: 202.6(5) 2×	
–O2: 205 4×	-O2: 201.2(4) 2×	-O2: 206.6(2) 4×	
	–O2a: 212.0(4) 2×		
Sb–O1: 200 2×	Sb-O1: 199.4(6), 201.3(7)	Sb–O1: 199.4(3) 2×	
–O2: 200 2×	-O2: 199.3(6), 199.6(6)	–O2: 197.4(3) 2×	
197 2×	-O2a: 196.0(6), 197.3(6)	197.1(2) 2×	
	Angles		
O1–Zn–O2: 90 8×	O1–Cu–O2: 87.2(2) 2×	O1–Cu–O2: 90 8×	
O2–Zn–O2: 78.5 2×	92.3(2) 2×	O2–Cu–O2: 78.0(2) 2×	
101.5 2×	O1–Cu–O2a: 90.3(2) 2×	102.0 (2) 2×	
	89.7(2) 2×		
	O2–Cu–O2a: 77.7(2) 2×		
	102.3(2) 2×		
O1-Sb-O1: 79.3	O1-Sb-O1: 79.1(3)	O1-Sb-O1: 77.4(2)	
O1–Sb–O2: 91.0 4×	O1-Sb-O2: 94.5(3);	O1–Sb–O2: 91.14(3) 4×	
99.3 2×	99.6(3); 90.4(3)	100.0(1) 2×	
O2-Sb-O2: 82.2	O1-Sb-O2a: 89.2(3);	O2-Sb-O2: 82.5(1)	
89.0 4×	91.7(3); 99.5(3)	88.91(2) 4×	
	O2-Sb-O2: 88.3(2)		
	O2-Sb-O2a: 87.7(3);		
	89.8(3); 81.9(3);		
	O2a-Sb-O2a: 88.7(2)		

ation of β from 90° (91.2° at T = 298 K) and to a minor extent to different lengths ($\delta \approx 0.2$ pm) of *a* and *b* in the monoclinic β modification compared to the tetragonal α modification. It is further interesting to note that the length of the *c*-axis is nearly temperature independent in the range $298 \le T \le 523$ K, whereas $a \ge b$ change significantly with temperature. In contrast to β , which remains 90° for T > 380 K, and the unit cell volume V, the temperature dependence of which shows a change in slope around T = 380 K, the slope of the temperature dependence of $a \ge b$ does not significantly change at this temperature (Fig. 2).

Concerning the individual CuO_6 and SbO_6 octahedra the phase transition has different consequences. Whereas the average Sb-O spacing shows a slight decrease from 199.3 to 198.3 pm when increasing the temperature from 293 to 400 K, the average Cu-O distance increases slightly from 204.5 to 205.6 pm. In particular, one deduces (Fig. 3) that the CuO₆ octahedron switches from an *elongated* form (α -CuSb₂O₆) to a *compressed* form, with the directions of elongation and compression not being the same (Table 3). In the low-temperature modification the direction of elongation is along the O2a-Cu bonds (212.0 pm), with Cu-O2 and Cu–O1 spacings of 201.2 $(2 \times)$ and 200.4 pm $(2 \times)$, respectively, in the equatorial plane. In the high-temperature form, however, the Cu-O1 bonds (202.6 pm) mark the direction of compression, with longer Cu-O2 distances of 206.6 pm $(4 \times)$ in the plane perpendicular to this direction.

FIG. 2. The thermal expansion of the lattice parameters and the unit cell volume for CuSb_2O_6 in the temperature range 298 < T < 523 K (errors correspond to the size of the symbols).

In contrast, the Sb–O distances change only slightly when passing the phase transition. Whereas they lie in the range from 196.0 to 201.3 pm in β -CuSb₂O₆, this range is between 197.1 and 199.4 pm in α -CuSb₂O₆. The largest angular deviation from 90° is found along the direction of edge sharing of CuO₆ and SbO₆ octahedra. Whereas the angle O2a–Cu–O2 is 77.7° for β -CuSb₂O₆, the corresponding value is 78.0° for α -CuSb₂O₆ (Fig. 3).

IR and Raman Spectra of CuSb₂O₆

Earlier observations of temperature-dependent changes in the IR and Raman spectra (8,9) of CuSb_2O_6 could not be interpreted unambigously, because the phase transition and associated structural details were not known. According to the lattice dynamical calculations of Husson *et al.* (9) the differences in both types of spectra are not due to vibrations of the CuO_6 octahedra but mainly originate from vibrations of the Sb_2O_{10} units. By analogy with results obtained for MgTa_2O_6 (9) we assign the IR band of α -CuSb}2O_6 observed at 700 cm⁻¹, as well as the Raman line at 645 cm⁻¹, to vibrations of the O2 atoms, which link the Sb}2O_{10} unit to the CuO₆ octahedra (Fig. 4).

According to Husson *et al.* (9) these vibrations belong to the degenerate species E_u and E_g , respectively. By symmetry reduction in the low-temperature form the degeneracy is

FIG. 3. Interatomic distances (pm) for the CuO_6 and SbO_6 octahedra in α - (in parentheses) and β -CuSb₂O₆.

FIG. 4. Temperature dependent IR (bottom) and Raman spectra (top) of $CuSb_2O_6$.

lifted. It is interesting to note that the intensities of the Raman lines at 639 and 672 cm⁻¹ are nearly half of that at 645 cm⁻¹, thus confirming the interpretation of being generated by a splitting of the E_g mode.

EPR analysis of Mixed Crystals $Zn_{1-x}Cu_xSb_2O_6$

Figure 5 shows the X-band EPR spectrum of Cu^{2+} doped $ZnSb_2O_6(x = 0.01)$ at 4 K. It exhibits the typical features expected for a tetragonally compressed CuO_6 octahedron with resolved hyperfine structures induced by the electron-nucleus interaction of copper. The g values and hyperfine splitting constants A are collected in Table 4. At Q-band frequencies a small orthorhombic splitting of the g_{\perp} signal ($\delta_g \cong 0.01_5$) is resolved, which is not seen in the X-band spectra. Apparently Cu^{2+} adopts the host site ZnO₆ symmetry, even with the expected small lower symmetry distortion component due to the angular distortion in the equatorial plane (Table 3). There is no significant temperature dependence of the g values observed.

Equation [1] gives expressions for g and A relevant for an ${}^{2}A_{1g}$ (d_{z}^{2}) ground state of Cu²⁺ in a compressed D_{4h} coordination (10),

$$g_{\parallel} = g_0 \qquad u_{\parallel}(\perp) = k_{\parallel}(\perp)^2 \zeta_0 / E[A_1 \to B_2(E)]$$
$$g_{\perp} = g_0 + 6u_{\perp}$$

FIG. 5. *X*-band EPR spectra (4 K) of mixed crystals $Zn_{1-x}Cu_xSb_2O_6$ with x = 0.01, 0.10, 0.25 (from above).

(g^e -Tensor Components Refer to Compounds with $x \ge 0.5$)							
x	T(K)	g_{\parallel}		g_{\perp}		$g_{ m av}$	
0.01^{a} 0.1^{b}	4 4 25	2.02 ₁ 2.01 ₇ 2.02 ₅	$\cong 2.35$ 2.33 ₅ 2.34 ₂ ⁶		X X Q	≅2.24 2.23 2.23 ₅	
		$g_1^{e'}$	$g_2^{e'}$	$g_3^{e^\prime}$		g_{av}	
0.5 0.75 1.0	4 4 100 25	$\cong 2.13$ 2.11 ₁ 2.11 ₅ $\cong 2.10$	$ \cong 2.19 2.19_5 \cong 2.21 \cong 2.20 $	$ \cong 2.35 2.36_2 \cong 2.35_5 \cong 2.35 $	$egin{array}{c} Q \ X, Q^d \ Q \ Q \ Q \end{array}$	$ \stackrel{\cong 2.22_{5}}{2.22_{5}} \\ \stackrel{2.22_{5}}{2.22_{5}} \\ \stackrel{\cong 2.22}{\cong 2.22} $	

TABLE 4EPR Parameters for Mixed Crystals $Zn_{1-x}Cu_xSb_2O_6$ ($g^{e'}$ -Tensor Components Refer to Compounds with x > 0.5

^{*a*} Hyperfine splittings: $|A_z| \cong 67 \times 10^{-4} \text{ cm}^{-1}$, $|A_{xy}| \cong 40 \times 10^{-4} \text{ cm}^{-1}$. To obtain meaningful bonding arguments, parameters A_z and A_{xy} have to be chosen positive and negative, respectively.

^bAdditional signal of exchange origin at $g_{\perp}^e \approx 2.17$ (see text).

^c Splitted into two signals at 2.33₅ and 2.35 (see text).

^d The EPR parameters of the simulated spectrum are given in legend for Fig. 6.

$$\begin{split} A_{\parallel} &= P[-\alpha^{2}(\kappa-4/7)-1/7(g_{\perp}-g_{0})]\\ A_{\perp} &= P[-\alpha^{2}(\kappa+2/7)+15/14(g_{\perp}-g_{0})]\\ \Psi_{g} &= \alpha d_{z}^{2}-\alpha' L_{z}^{2}, \end{split}$$

where ζ_0 , k, and E are the free-ion spin-orbit coupling constant of Cu^{2+} (830 cm⁻¹), the covalency parameter, and specific d-d transitions (see below), respectively. The Fermi contact term κ and the calibrating constants P have the values 0.43 and 360×10^{-4} cm⁻¹ for the free Cu²⁺ ion. α is the mixing coefficient in the ground state MO, where L_z^2 represents the symmetry adapted linear combination of ligand orbitals. In contrast to Eq. [1], g_{\parallel} has a value slightly larger than $g_0 = 2.0023$. This feature can be traced back to a $d_{x^2-y^2}$ contribution to the ground state wavefunction and will be commented on later. From the orbital contribution $u_{\perp} \cong 0.056$ and the relevant ligand field transition (see next section) a covalency parameter $k_{\perp} \approx 0.82_5(2)$ is estimated. The calculated α value is 0.91, while the decrease in $\kappa \cong 0.29$ with respect to 0.43 indicates significant contributions from 4s in the ground state (10). This is expected because d_z^2 and s possess the same a_{1g} symmetry already in D_{4h} symmetry. The correlation of the g values with the chosen molecular coordinate system is given in Fig. 9.

If the Cu²⁺ concentration is raised above $x \cong 0.1$ a new perpendicular signal around 2.17 ($g_{23}^e = g_{\perp}^e$) appears, while the g_{\parallel} signal looses intensity (Fig. 5). The former signal becomes more prominent with increasing x, while the latter soon vanishes. This observation can be explained by exchange interactions between Cu²⁺ centers, which occupy both magnetically inequivalent M^{2+} positions in the unit cell. The g_{\parallel} values of the two tetragonal centers, which are correlated with the short Cu–O1 directions (Table 3), form a canting angle of $2\gamma = 90^{\circ}$ with each other, leading to an exchange-coupled g^e tensor with the components given in

$$g_{2}^{e} = \sin^{2}\gamma g_{\parallel} + \cos^{2}\gamma g_{\perp}, \quad g_{3}^{e} = \cos^{2}\gamma g_{\parallel} + \sin^{2}\gamma g_{\perp},$$

$$g_{1}^{e} = g_{\perp}; \quad \cos 2\gamma = g_{2}^{e} - g_{3}^{e}/g_{2}^{e} + g_{3}^{e} - 2g_{1}^{e} \qquad [2]$$

$$\gamma = 45^{\circ}; \quad g_{1}^{e} = g_{\perp}, \quad g_{23}^{e} = g_{\perp}^{e} = 1/2(g_{\parallel} + g_{\perp}).$$

 g_{\perp}^{e} is calculated appear at 2.18, near the position of observation (Table 4, Fig. 5). Though the two Cu²⁺ centers lie isolated in the trirutile lattice with Cu–Cu spacings of 5.3 Å (Fig. 3), an exchange integral according to $|J|/k \approx 1 \text{ cm}^{-1}$ will already suffice for averaging the g tensor components (Eq. [2]).

A drastic change of the EPR spectrum occurs at $x \cong 0.5$. The exchange-averaged spectrum resulting from the two compressed magnetically inequivalent Cu²⁺ polyhedra is replaced by a new orthorhombic spectrum (Fig. 6, Table 4). At *Q*-band frequencies the *g* anisotropy is resolved sufficiently well. As will be outlined in detail below, a consistent

FIG. 6. *Q*-band EPR spectra of mixed crystals $Zn_{1-x}Cu_xSb_2O_6$ with x = 0.75 at 10 K (I), 1.0 at 75 K (III). For x = 0.75 the simulated spectrum (chosen parameters: $\Delta H = 57.5$ G; $A = 5 \times 10^{-4}$ cm⁻¹; $g_1^{e'} = 2.110$, $g_2^{e'} = 2.193$, $g_3^{e'} = 2.369$) is also shown (II).

assignment is only possible with the assumption of a local tetragonally elongated coordination geometry—as occurring in β -CuSb₂O₆—and again assuming exchange interactions.

Figure 9 depicts the chosen molecular coordinate system and its correlation with the bond lengths and g tensor components for the cases of the compressed and elongated CuO₆ polyhedron. An elongated D_{4h} coordination (along x, see Fig. 9) of Cu²⁺ implies a ${}^{2}B_{1g} (d_{y^2-z^2})$ ground state and would induce the g and A tensor components (10) listed in

$$g'_{\parallel} = g_{0} + 8u'_{\parallel} \qquad u_{\parallel}(\perp)' = k_{\parallel}(\perp)'^{2} \zeta_{0} / E[B_{1g} \rightarrow B_{2g}(E_{g})]$$

$$g'_{\perp} = g_{0} + 2u'_{\perp}$$

$$A'_{\parallel} = P[-\alpha^{2}(\kappa' + 4/7) + 3/7(g'_{\perp} - g_{0}) + g'_{\parallel} - g_{0}]$$

$$A'_{\perp} = P[-\alpha^{2}(\kappa' - 2/7) + 11/14(g'_{\perp} - g_{0})]$$

$$\Psi_{g} = \alpha \, d_{y^{2} - z^{2}} - \alpha' L_{y^{2} - z^{2}}.$$
[3]

Here, the mixing coefficient α refers to the $d_{y^2-z^2}$ orbital rather than being correlated with d_z^2 as in Eq. [1]. Equation [3] implies—in agreement with experimental experience and symmetry arguments—that the equatorial plane of the short Cu–O1(2) spacings (neglecting the small orthorhombic component) correlates with g'_{\perp} , while g'_{\parallel} has the direction of the normal to this plane rather than that of the long Cu–O2a bond, which forms an angle of about 12° with this normal (see the structural data for β -CuSb₂O₆ in Table 3).

The three observed exchange-coupled $g^{e'}$ tensor components (Table 4: $g_1^{e'} = 2.11$, $g_2^{e'} = 2.19_5$, $g_3^{e'} = 2.37$) are expected to be oriented parallel and perpendicular to the *b* unique axis of the monoclinic β -CuSb₂O₆ unit cell, which—though not yet apparent in the lattice metric—is already symmetry determining at higher Cu²⁺ concentrations. The structural angle 2γ between the just defined normal directions of the two magnetically inequivalent CuO₆ polyhedra in β -CuSb₂O₆ is 52° and located in the *ac* plane. Utilizing Eq. [2], which is equally valid for local compressed and elongated D_{4h} geometries, in a slightly modified form one obtains the molecular g values in

$$g_z = 2.11, \quad g_y \cong 2.13_5; \quad g_x \cong 2.43;$$

 $k'(d_{xz}, d_{yz}) \approx 0.82(3), \quad k'(d_{xy}) \cong 0.89.$ [4]

Because the $g^{e'}$ tensor components do not vary with the Cu²⁺ concentration in the range $0.5 \le x \le 1.0$ it is indeed expected that the structural angle for β -CuSb₂O₆ should reproduce the EPR results. The covalency factors derived from Eq. [3], modified with respect to orthorhombic symmetry and based on the calculated d-d band positions (see below), are those in Eq. [4]. As will be discussed in the next section in detail, the strongly diverging k values are caused by a π (anti)bonding anisotropy of considerable magnitude.

While $k'(d_{xz}, d_{yz})$ equals the k_{\perp} parameter for the compressed octahedron (0.82₅(2)), the component $k'(d_{xy})$ is considerably larger, indicating strongly reduced π bonding.

Magnetic susceptibility data between 10 and 350 K indicate that β -CuSb₂O₆ is a linear chain Heisenberg antiferromagnet with J/k = -47 K (3, 11). Three-dimensional ordering seems to occur at $T_c = -8.5$ K, the interchain coupling being of rather complex nature, however (11). From temperature-dependent EPR measurements, one deduces that the signal linewidth strongly decreases when the temperature is lowered, reaching its final value at about 190 K. The signal intensity also decreases with decreasing temperature, the spectrum still persisting down to 5 K (as in the case of the mixed crystals with x < 1.0). The latter result is not in contradiction to the magnetic structure below 8.5 K, which is presumably of frustrated nature (11).

The analysis of the low-temperature EPR spectra yields that tetragonally compressed CuO₆ polyhedra are present at Cu²⁺ concentrations x < 0.5 while above this critical concentration the distortion geometry switches to a tetragonal elongation, which is characteristic for β -CuSb₂O₆ (Table 3). There are even indications that in a narrow concentration range around $x \approx 0.5$ both types of clusters are present side by side. The radial distortion parameter ρ ,

$$\rho = \{2(\delta a_x^2 + \delta a_y^2 + \delta a_z^2)\}^{1/2}$$
[5]

where the δa_i (i = x, y, z) are the deviations of the Cu–O bond lengths from the averaged spacing, is calculated to be $\cong 13$ pm for the CuO₆ polyhedra in β -CuSb₂O₆. It is rather small in comparison to other host lattices and hints toward an unusually stiff polyhedron-connection pattern. The presumable reason is the Sb(V) octahedra in the environment of the divalent cations, giving the CuO₆ polyhedron not much geometrical freedom for a more distinct Jahn–Teller distortion.

In the concentration region of compressed CuO₆ octahedra magnetic short-range interactions between magnetically inequivalent polyhedra occur, which are of the antiferrodistortive kind (canting angle $2\gamma = 90^{\circ}$) (4, 12). Above x > 0.5 the elongated octahedra are equally magnetically correlated, but with a canting angle around 65°, suggesting that, for β -CuSb₂O₆, below the short-range-tolong-range transition at 8.5 K a ferromagnetic component might be present.

It may be interesting to compare the above EPR results with those for the Mg_{1-x}Cu_xSb₂O₆ mixed crystal series. Similar spectra are observed, but with some distinctions compared to the Zn²⁺ solid solution. On one hand, the g values of the isolated compressed CuO₆ octahedra at very low doping concentrations ($g_{\parallel} = 2.01_0$; $g_{\perp} \cong 2.32$, $g_{\perp}^e \cong$ $2.16_5 - g_{av} \cong 2.22$) are indicative of a more pronounced host-site compression, because the deviation of g_{\parallel} from g_0 is comparatively smaller (see the discussion below). On the

FIG. 7. *Q*-band EPR spectra of $Mg_{1-x}Cu_xSb_2O_6$ mixed crystals with x = 0.5 (16 K, below) and 0.9 (4 K, above). Exchange-coupled clusters of compressed $(g_{\parallel}^e, g_{\perp}^e)$ and elongated CuO₆ octahedra $(g_{\parallel}^e, g_{\perp}^e)$ are seen. See text for numerical values.

other hand, the concentration range, where clusters of exchange-coupled compressed and elongated CuO₆ octahedra $(g_3^{e'} = 2.35; g_2^{e'} = 2.19; g_1^{e'} = 2.12 - g_{av} \cong 2.22$, nearly identical to the $g^{e'}$ tensor components in Table 4) coexist, extends to higher x values (Fig. 7). While at lower Cu²⁺ concentrations the spectra overlap with nearly equal intensities (x = 0.5, Fig. 7), the signals connected with the elongated octahedron dominate in intensity at high x values (x = 0.9).

d-d Transitions

Additional information about the extent of the CuO₆ polyhedron distortion and the Cu–O bond properties is provided by the optical spectra in the region of the d-d transitions (Fig. 8). They are characterized by a broad band with a maximum at 11,400 cm⁻¹ and a shoulder around 9000 cm⁻¹. The resolution is not improved when the temperature is decreased to 5 K. Surprisingly at the first sight no changes in the band positions and in the intensity distribution are observed when switching from the compressed to the elongated coordination geometry. However, this feature is readily explained by looking at those orbitals of the oxygen atoms in the trirutile structure (Fig. 1) which are used for π overlap with the copper d_{xy} , d_{xz} , and d_{yz} orbitals. Because each oxygen atom possesses an approximately tri-

gonal-planar cationic coordination corresponding to a sp^2 hybridization, only one orbital perpendicular to this plane can be used for π bonding (Figs. 9a and 9b). This introduces a π anisotropy into the Cu–O bonding in the tetragonal trirutile structure, which would be even present in the case of equal bond lengths, reducing the local CuO₆ symmetry from O_h to D_{2h} . Neglecting the deviations $(\pm 6^\circ)$ of the bond angles from 90° in the equatorial plane, the d contributions to the metal-oxygen bonding can be nicely parametrized within the frame of the "angular-overlap model" (AOM). In this model parameters e_{σ} and e_{π} describe the σ - and π antibonding energies of the d orbitals in the respective point group (13). Figure 9c depicts the corresponding d-orbital energy diagram, showing that a distinct splitting of the t_{2g} levels occurs by the described π effect even in a formal O_h geometry.¹

¹While the d_{xy} orbital is nonbonding, the AOM determinant for the d_{xz} and d_{yz} orbitals is

$$\begin{vmatrix} 2e_{\pi}^{x} + e_{\pi}^{z} - E & e_{\pi}^{z} \\ e_{\pi}^{z} & 2e_{\pi}^{y} + e_{\pi}^{z} - E \end{vmatrix} = 0,$$

the indices x, y, z referring to the oxygen p orbital with π -bonding ability in the respective molecular direction (see Fig. 9b). In the case of equal Cu–O bond lengths in the xy plane, the solutions are $2e_{\pi}^{xy}$ with a $1/\sqrt{2} (d_{xz} - d_{yz})$ and $2(e_{\pi}^{xy} + e_{\pi}^{z})$ with a $1/\sqrt{2} (d_{xz} + d_{yz})$ eigenfunction (Fig. 9c).

FIG.8. Ligand field reflection spectra of mixed crystals $Zn_{1-x}Cu_xSb_2O_6$ with x = 0.3, 0.5, and, 1.0, from below (298 K; intensity scale, reflectivity *R* in arbitrary units). For the band assignment (calculated *d*-*d* transition energies for the compressed— D_{2h} , below—and the elongated octahedron— C_{2h} , above—are indicated) see Fig. 10. The weak absorptions below 8000 cm⁻¹ are due to H₂O or OH⁻ overtones.

An additional tetragonal compression along the Cu-O1 bond or elongation along the Cu-O2a bond direction, the latter distortion reducing the symmetry to C_{2h} (Fig. 9b), will split the σ -antibonding e_g level. The corresponding ${}^{2}A_{1g} \rightarrow {}^{2}B_{1g}$ or ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ transition (D_{4h} labeling) should occur below 4000 cm⁻¹, the limit of the accessible spectra region, however, because the CuO₆ polyhedron distortion is small ($\rho \simeq 0.13$ Å); see Figs. 9c and 10. Indeed the d-d spectra are empty below 9000 cm^{-1} (Fig. 8).² The transition from the compressed to the elongated octahedron does not affect the AOM energies much, as can be deduced from Fig. 10, if the same radial distortion parameter is chosen for both geometries (this point will be discussed below). The energy sequence of the split states of the octahedral ${}^{2}T_{2g}$ term is mainly determined by the π anisotropy depicted in Fig. 9b. The splittings due to Cu-O distance variations are less important. The chosen AOM parameter set nicely reproduces the d-d band positions (Fig. 10). While the averaged ${}^{2}A_{g} \rightarrow {}^{2}B_{1g}$, ${}^{2}B_{2g}$ (${}^{2}A_{g}$, ${}^{2}B_{g}$) transition energy is calculated to occur at 11500 cm⁻¹, the ${}^{2}A_{g} \rightarrow {}^{2}B_{3g}$ (${}^{2}B_{g}$) absorption is expected at 9000 cm⁻¹. The splitting of the octahedral ${}^{2}E_{g}$ ground state is estimated to be of the magnitude 2150 cm⁻

We may at this stage conclude that the concentration independence of the ligand field spectra has two reasons. First, the discussed π -bonding anisotropy does not significantly depend on the direction of the distortion of the CuO₆ octahedron, so long as the bond length changes are not too large in magnitude. Second, the extent of the distortion, as measured by the radial distortion parameter ρ , remains constant for all x values. The latter condition implies Cu–O spacings in the compressed octahedron below x = 0.5 of $a_z \approx 197$ pm (2 ×), $a_{xy} \approx 208.5$ pm (4 ×), calculated from Eq. [5] with the same average bond length a = 204.5 pm as for the elongated CuO₆ polyhedron in β -CuSb₂O₆ (Table 1).

With the AOM parameters $e_{\alpha} = 3675 \text{ cm}^{-1}$ and $e_{\pi} = 720 \text{ cm}^{-1}$ for a regular octahedron with spacings of 204.5 pm and the discussed π -bonding restrictions in the trirutile structure, the term diagrams in Fig. 10 result. Here the e_{σ} and e_{π} values for the spacings characterizing the compressed and the elongated octahedron, respectively, have been estimated by using the relationship

$$e_i^j = (S_i^{j2}/S_i^2)e_i \quad (i = \sigma, \pi; j = x, y, z),$$
 [6]

where the S_i^j , S_i are tabulated overlap integrals for the Cu–O bond (14). Here e_i (S_i) and the e_i^j (S_i^j)'s refer to the Cu–O bond lengths in the regular octahedron and in the distorted octahedra, respectively. The chosen parameter set corresponds to an octahedral ligand field parameter of $\Delta \cong$

²The band maximum at $\approx 4000 \text{ cm}^{-1}$ in (2) assigned to this transition seems to be an artifact, caused by the specific absorption properties of the SbO₆ polyhedra. To exclude this effect we have used here the host compound ZnSb₂O₆ as the white standard.

FIG. 9. The *M*–O bonding (*d* contributions) in the trirutile structure (MSb_2O_6) —the cationic coordination of the oxygen atoms (a), the oxygen orbitals with π -bonding ability (b), and the one-electron *MO* diagram for Cu^{2+} on the *M* position—assuming equal Cu–O spacings (204.7 pm) and neglecting the small angular distortion in the Cu(O2)₄ plane (c). Model calculation with $e_{\sigma} = 3675 \text{ cm}^{-1}$ and $e_{\pi} = 720 \text{ cm}^{-1}$. (b) also gives the molecular coordinate system for the CuO₆ polyhedra in Zn_{1-x}Cu_xSb₂O₆ mixed crystals (O2' \equiv O2a, Table 3). In the case of compressed octahedra g_{\parallel} and g_{\perp} correlate with the *z* direction and the *xy* plane, respectively. For the elongated octahedra a correlation of g'_{\perp} with the *yz* plane and of g'_{\parallel} with the normal to this plane is consistent with the EPR results.

9600 cm⁻¹, if the center-of-gravity rule for the splittings of the octahedral E_g and T_{2g} parent levels is considered valid. This value is near that reported for Ni²⁺ in NiSb₂O₆ (8900 cm⁻¹) (15), as expected for a 3*d* cation of the same charge, neighbored in the periodic table, and in an identical host structure with the same ligand atom. In rutile-type structures Δ (averaged octahedral value) equals $3e_{\sigma} - 2e_{\pi}$ (Fig. 9c), in difference to a situation where the π bonding is not restricted ($\Delta = 3e_{\sigma} - 4e_{\pi}$) (13,14).

The π anisotropy is also reflected by the covalency parameters k_{\perp} (connected with the d_{xz} , d_{yz} MOs) for the compressed and $k'(d_{xy}), k'(d_{xz}, d_{yz})$ for the elongated CuO₆ octahedron (Eq. [4]). While the orbital reduction factors refering to d_{xz}, d_{yz} have values around 0.82(3), $k'(d_{xy})$ is much larger, \cong 0.89. The equations

$$k'(d_{yz}) \cong C\alpha\beta; \quad k'(d_{xz}) \cong C\alpha\gamma_1;$$

$$k'(d_{xy}) = C\alpha\gamma_2; \quad (C < 1) \ (13))$$
[7]

give approximate relations between the covalency factors $k \cong k'$, the mixing coefficient α in the ground state MO (Eqs. [1] and [3]) and the corresponding coefficients β and γ_1 , γ_2 in the π -antibonding MOs originating from

FIG. 10. Term diagram of Cu^{2+} in ZnSb₂O₆—compressed (right) and elongated (left) CuO₆ octahedra along the molecular z and x direction, respectively. The polyhedron symmetries are D_{2h} (compression) and C_{2h} (elongation), with the D_{4h} parent terms also given. The AOM energies refer to Cu–O spacings $a_z = 197$ pm, $a_{xy} = 208.5$ pm (compression) and $a_x = 212$ pm, $a_{yz} = 201$ pm (elongation). The AOM parameter set chosen for the averaged Cu–O distance (204.7 pm) is: $e_{\sigma} = 3675$ cm⁻¹, $e_{\pi} = 720$ cm⁻¹. The labeling of the AOM parameters (x, y, z) refers to the overlap of the metal d orbitals with the oxygen p orbitals in the respective molecular directions (Fig. 9). The nondiagonal energy N is $\{(e_{\pi}^{yz})^2 + (e_{\pi}^{yz} - e_{\pi}^{yz})^2\}^{1/2}$ (see matrix in footnote 1).

the d_{yz} and d_{xz}, d_{xy} orbitals, respectively. We roughly estimate that, because d_{xy} is expected to be nonbonding, $(\gamma_2 \approx 1) - \beta \approx \gamma_1$ is about 0.92. The latter approximate value nearly equals the α coefficient in the σ -antibonding d_z^2 ground state *MO* of the compressed octahedron (0.91) as derived from the hyperfine coupling. Both values are rather high for an oxidic solid and indicative of a preferentially ionic bond.

The Interplay of Host Site Strain and Vibronic Jahn–Teller Coupling

The octahedra in rutile-type structures are usually tetragonally compressed in the case that cations with closed-shell electron configurations occupy these positions. This hostsite distortion is induced by packing effects and, possibly, by the π -bonding anisotropy discussed above. The Zn²⁺ octahedra in ZnSb₂O₆ are deformed according to $\rho \cong 4$ pm (Table 3). The extent of the distortion is enhanced to $\rho \cong 13$ pm by the Jahn–Teller effect, if Cu²⁺ replaces Zn²⁺ (or Mg²⁺), yielding β -CuSb₂O₆.

$$\Delta E = 2 A_1 \rho_t \quad (\rho_t = \rho_m + \rho_s); \quad K_\varepsilon = A_1 / \rho_m \qquad [8]$$

gives the relation between the first-order coupling constant A_1 and the ground state splitting ΔE (16). The latter is mainly caused by vibronic interactions of the Jahn-Teller type, but includes the host-site strain as well, with ρ_m and ρ_s referring to the Jahn–Teller and the strain distortion contribution, respectively. A_1 is calculated to be $\simeq 85 \text{ cm}^{-1} \text{ pm}^{-1}$, using the experimental radial distortion parameter for the CuO₆ polyhedron in β -CuSb₂O₆ $(\rho_t = 13 \text{ pm})$ and the estimated ground state splitting of about 2200 cm⁻¹ (Fig. 10). The magnitude of A_1 depends on the chosen overlap integrals and is enhanced (larger calculated ground state splitting) if S values for the charged Cu^{2+} ion are used. It is in the range expected for an oxidic solid though. The force constant of the involved Jahn-Teller active ε_g mode is $K_{\varepsilon} \cong 9.5$ cm⁻¹ pm⁻², applying the appropriate calculation formalism (16) (Eq. [8]). Here, $\rho_m \cong 9 \text{ pm}$ was used, because the host-site distortion contribution $(\rho \cong 4 \text{ pm})$ can be considered as being vibronically silent. K_{ε} is extremely large, confirming that the restoring forces against a distortion are very strong, due to a stiff lattice.

The first-order Jahn-Teller coupling has no energetic preference for either an elongated or a compressed octahedral geometry. It is only the small higher order coupling terms which favor the elongation (4, 16). They are described by an angular distortion parameter φ , where $\varphi = 0^{\circ}$, 120° , 240° correspond to octahedra elongated along z, x, and y, respectively, while $\varphi = 180^{\circ}$, 300° , 60° indicate a compression along these molecular directions. The latter conformations correlate with the saddle points in the energy diagram of Fig. 11I, the former with the minima. The energy difference 2β between the extrema is typically about 5% of the ground state splitting in magnitude (17). A strain acting along the z direction, $\varphi = 180^{\circ}$, will distort the ground state potential surface, reducing the saddle point energy at $\varphi = 180^{\circ}$ and thus equally stabilizing two of the three minima. Eventually the zero-point vibronic level will be above the saddle point and will create a situation as that observed for $Zn_{1-x}Cu_xSb_2O_6$ mixed crystals with x < 0.5 (Fig. 11II). This vibronic state, centered at $\varphi = 180^\circ$, is delocalized over a rather large $\delta \varphi$ range, which is expected to induce a $d_{x^2-y^2}$ contribution to the d_z^2 ground state and to increase the g_{\parallel} value above g_0 —as was indeed observed (vide supra).

Increasing the Cu²⁺ concentration to x > 0.5 apparently slightly enhances the higher order vibronic coupling constant due to cooperative elastic forces between the CuO₆ polyhedra,³ thus creating a situation in which the lowest

FIG. 11. Warping of the ground state potential surface of the CuO₆ polyhedra in mixed crystals $Zn_{1-x}Cu_xSb_2O_6$ by higher order vibronic coupling terms (2 β) and the influence of a host-lattice strain (S) at $\varphi = 180^\circ$ —projection along the angular φ -coordinate: Situation (I) and (II; x < 0.5) without and with strain, respectively; III refers to mixed crystals with x > 0.5, where the $2\beta/S$ ratio is enhanced with respect to II.

vibronic states are localized in the two lower minima (Fig. 11III). While usually the cooperative Jahn–Teller effect distinctly enhances the ground state splitting and the extent of the local distortion of the Cu^{2+} polyhedron, this is not so in this case—as clearly indicated by the *d*–*d* transition energies and the average *g* values (Table 4), which do not change with the Cu^{2+} concentration. Apparently only the interplay between the higher order coupling terms and the host site strain, which determine the warping structure (Fig. 11) of the ground state potential surface, is slightly, though significantly, influenced.

The two lowest minima in Fig. 11III represent the two equivalent alternatives of an elongation, namely along the Cu–O(2a) or Cu–O(2) bond, corresponding to $\varphi \approx 120^{\circ}$ and $\approx 240^{\circ}$, respectively. The tendency to form twinned single crystals can be led back to the four possibilities of having the long axis along a Cu–O(2) (2a) bond in the two differently oriented CuO₆ polyhedra in the unit cell (Figs. 1 and 3). Thus the possibility to establish a long-range order of elongated CuO₆ octahedra corresponding to a strongly disturbed antiferrodistortive pattern ($2\gamma \approx 65^{\circ}$) with increasing x is the presumable reason for switching from situation II to III (Fig. 11).

It should finally be mentioned that the positions of the two lower minima in the presence of strain (Figs 11II and 11III) are shifted from their original octahedral positions to $\varphi > 120^{\circ}$ and $< 240^{\circ}$, well in accord with the small distance anisotropy in the yz plane of the CuO₆ polyhedra in β -CuSb₂O₆ (Table 3).

The interplay between vibronic Jahn–Teller coupling of octahedral Cu^{2+} and host site strain has been studied in several cases, namely for mixed crystals $Ba_2Zn_{1-x}Cu_xF_6$ (17a) and $K_2Zn_{1-x}Cu_xF_4$ (17b) for example. In both systems

³Elastic coupling between neighbor CuL_6 polyhedra leads to a situation in which the preferred axes of elongation orient with respect to each other in a way that the unit cell distortion remains small. The directional correlation between different polyhedra generates cooperative order patterns of different symmetries, which may induce crystallographic phase transitions (4, 16).

also a transition from a local compressed to an elongated coordination occurs with increasing x. However, due to much more pronounced cooperative Jahn–Teller forces, which increase with increasing Cu^{2+} concentration, the local distortion becomes continuously larger. In the present case we meet the singular situation that the compressed-toelongated transformation can be studied approximately without this additional parameter.

CONCLUSIONS

The presented results nicely demostrate that the energetically deciding factor for the ground state stabilization of the CuO₆ polyhedron is the linear Jahn–Teller coupling with no preference for any distortion geometry, so long as the distortion pathway corresponds to the octahedral ε_{σ} mode. Only higher order vibronic coupling introduces a slight preference for the elongated geometry. If small strain effects of nearly the same magnitude as the higher order coupling terms are present, the geometry may switch from elongated to compressed. Interestingly enough, we can deduce from the spectroscopic results that clusters of elongated octahedra are present already at rather low Cu²⁺ concentrations. They are not ordered in a long-range pattern though, this occurring at a critical x value of 0.75 (295 K). The phase transition to the monoclinic structure is observed when the local distortion of the cooperatively ordered octahedra due to the Cu–O distance anisotropies in the xy planes cannot be cushioned by the tetragonal structure anymore.

The phase transitions of CuSb₂O₆ at 380 K can be understood as induced by a thermal averaging process between the two equivalent minima in Fig. 11III because vibronic states above the saddle-point are occupied at higher temperatures, leading to a fast dynamic exchange between the minima. This argument is supported by the crystallographic data. If the Cu–O(2) and Cu–O(2a) spacings thermally equilibrate, one obtains from the neutron diffraction data for β -CuSb₂O₆ (Table 1) $a_z = 200.4$ pm and $a_{xy} = 206.6$ pm in rather good agreement with the X-ray single crystal data of 202.7 and 206.6 pm for the α phase. This "planar-dynamic" Jahn-Teller effect is expected to average the $g_2^{e'}$ and $g_3^{e'}$ values for the mixed crystals with x > 0.5 at higher temperatures, leading to $(g^{e'})_{dyn}$. tensor components of $\cong 2.11_5$ and $\cong 2.28_5$. The EPR spectra of CuSb₂O₆, and those of the mixed crystals with high x values as well, are not in contradiction with this supposition, because the linewidth is so large at 295 K that a g-tensor anisotropy cannot be resolved anymore. Thus the β -to- α phase transition of CuSb₂O₆ appears to be of the order-disorder type, implying the change from a local elongated CuO₆ octahedron to a *dynamically averaged* compressed conformation (see Fig. 11III). In constrast, the CuO₆ polyhedra in Cu²⁺-doped Zn(Mg)Sb₂O₆ are *statically* compressed, due to the rather strong host site strain influence (Fig. 11II). Here Cu–O spacings of 197 pm (a_z) and 208.5 pm (a_{xy}) are estimated, with a much larger difference $a_{xy} - a_z$ (\cong 11.5 pm) than in the dynamic case (\cong 6 pm).

ACKNOWLEDGMENTS

We are grateful to Prof. Dr. M. Atanasov (Bulgarian Academy of Sciences, Sofia) for valuable discussions concerning the AOM treatment, Prof. Dr. H. Haeuseler for his assistance in the interpretation of the IR and Raman spectra, and Prof. Dr. B. L. Ramakrishna (Arizona State University, Tempe, AZ) for supplying spectroscopic and magnetic results on $CuSb_2O_6$ in the frame of a cooperation supported by NATO.

REFERENCES

- 1. A. Bystrom, B. Hock, and B. Mason, Ark. Kemi Mineral. Geol. B 15, 1 (1941).
- 2. V. Propach and D. Reinen, Z. Anorg. Allg. Chem. 369, 278 (1969).
- A. Nakua, H. Yun, J. N. Reimers, J. E. Greedan, and C. V. Stager, J. Solid State Chem. 91, 105 (1991).
- 4. D. Reinen and C. Friebel, Struct. Bonding (Springer) 37, 1 (1979).
- J. D. Donaldson, A. Kjekshus, D. G. Nicholson, and T. Ranke, Acta Chem. Scand. Ser. A 29, 803 (1975).
- E. J. Gabe, Y. Le Page, J. P. Charland, F. L. Lee, and P. S. White, J. Appl. Crystallogr. 22, 384 (1989).
- 7. W. H. Bauer, Z. Kristallogr. 209, 143 (1994).
- R. Franck, C. Rocchiccioli-Deltcheff, and J. Guillermet, Spectrochim. Acta A 30, 1 (1974).
- 9. E. Husson, Y. Repelin, and H. Brusset, Spectrochim. Acta A 35, 1177 (1979).
- A. Ozarowski and D. Reinen, *Inorg. Chem.* 24, 3890 (1985). [See references therein].
- 11. A. M. Nakua and J. E. Greedan, J. Solid State Chem. 118, 199 (1995).
- D. Reinen and J. M. Dance, in "Inorg. Solid Fluorides" (P. Hagenmüller, Ed.), p. 525. Academic Press, San Diego, 1985.
- 13. C. K. Jørgensen, Chem. Phys. Lett. 1, 11 (1967).
- D. W. Smith, Struct. Bonding (Springer) 35, 87 (1978); private communication.
- 15. D. Reinen, Theoret. Chim. Acta 5, 312 (1966).
- 16. D. Reinen and M. Atanasov, Magn. Resonance Rev. 15, 167 (1991).
- (a) G. Steffen, D. Reinen, H. Stratemeier, M. J. Riley, M. A. Hitchman, M. Matthies, Recker, F. Wallrafen, and J. R. Niklas, *Inorg. Chem.* 29, 2123 (1990); (b) D. Reinen and S. Krause, *Inorg. Chem.* 20, 2750 (1981); M. J. Riley, M. A. Hitchman, and D. Reinen, *Chem. Phys.* 102, 11 (1986).